

The road map towards providing a robust Raman spectroscopy-based cancer diagnostic platform and integration into clinic

Riccardo Tagliapietra Renishaw SpA, via dei Prati 5 – 10044 Pianezza (TO) riccardo.tagliapietra@renishaw.com

Raman spectroscopy (RS) can distinguish cancer types/subtypes

- Raman spectroscopy (RS) has been demonstrated to:
 - distinguish healthy and cancerous tissues
 - identify cancer stages and disease subtypes
 - high accuracy
 - a number of organs, e.g. gastrointestinal (GI) tract, breast, brain, lymph nodes

Why is Raman spectroscopy not adopted for routine cancer diagnostics yet?

Reasons RS is not adopted for routine cancer diagnostics

- Awareness/acceptance by clinicians
- Solutions to current unmet needs
- Practicality of integrating the technology into their clinical workflow
 - Sample preparation
- Availability of a dedicated pathology diagnosis instrument
 - Robust platform without extensive optimisation
- Maturity of the technology
 - Data reproducibility
 - Data transferability
- Availability of a robust, validated and distributable disease classification model

An industry-academic collaborative consortium to overcome challenges

Propose Raman imaging as a diagnostic tool

- Identify cancer stage/subtype through their spectral fingerprints
- Extract chemical information from spectra and possible biomarker discovery
- Spatial information, e.g. tumour margin analysis

Aims of SMART: clinical integration of RS-based cancer diagnosis

Increase awareness and acceptance by clinicians	Identify unmet needs and provide tailored solutions	Optimised protocols	Provide a robust RS- based dianostic platform	Provide a robust GI tract cancer classification model
		 Tissue preparation compatible with current clinical workflow Optimised mapping parameters Data pre- processing to ensure transferability 	 Hardware Tissue Raman scanner Fast Raman imaging Software User friendly Enables model building and classification 	 Validated Distributable

Engage with clinicians

- Interview pathologists and surgeons
- Histopathology is the current gold standard for diagnosing cancer and identifying the cancer stage
 - Gain a better understanding of the current histopathology routine
 - Observe the current practice at histopathology laboratories

Increase awareness and acceptance by clinicians Identify unmet needs and provide tailored solutions

Oxford University Hospitals NHS NHS Foundation Trust

University Hospitals Bristol

Histopathology routine and RS integration

Identify unmet needs and provide tailored solutions

Tissue preparation compatible with current histopathology workflow

Counts

Optimised protocols

Raman imaging

- CaF₂ and MgF₂ are popular substrates but expensive
- Snap frozen
- Cryosections

Routine histopathology in the hospitals (UK)

- Glass slides (cheap)
- Formalin fixed paraffin embedded (FFPE)
- Microtomed

Substrate spectra collected at 785 nm

Tissue preparation compatible with current histopathology workflow

Optimised protocols

SMART:

- Snap frozen cryosections and FFPE samples
- CaF₂ and an alternative Raman-friendly substrate

Sample preparation optimisation:

- Complete deparaffination
- Choice of substrate:
 - No interfering Raman background signals
 - Cheap
 - Enable tissue region selection

MCR-ALS image of a rat liver section

11

Mirror slides

- Mirror finish reflective, high contrast even for unstained tissue sections
- No Raman background
- Higher signal-noise-ratio (SNR) spectra
- Complete deparaffination
- Significantly lower cost

Lewis et al 2016, Analytical Chemistry (manuscript submitted)

Reflective white light image – human colon crypts cross section on mirror slide

Optimised

protocols

Counts

© 2016 Renishaw plc

Mapping parameters

Laser wavelength: 785 nm StreamLine™ imaging:

- Laser line geometry
- Fast imaging
- Automates collection of 1000's of spectra
- Slalom mode (covers the gaps between data points when large step sizes are used)

Provide a robust RS-based diagnostic platform

Optimised protocols

Step size:

- High spatial resolution image
 - 1.1 µm step size
 - Images more familiar to pathologists
 - Lacks nuclear-to-cytoplasmic ratio information

A. H&E stained human colon. B. PCA image. Gaifulina *et al* 2014, Austin J Clin Pathol 1(5): 3

- Lower spatial resolution
 - 10 μ m 40 μ m step size (Slalom mode)
 - Include nuclear-to-cytoplasmic ratio information
- *Gavin Lloyd, Paper 9703-5 15 Feb 9:30

Facilitating the identification of diagnostically relevant regions

RENISHAW

RA800 series tissue scanner

0.4× magnification Reflective white light

H&E adjacent section

Raman imaging to discern different anatomical layers

 H&E stained Barrett's mucosa (human oesophagus) section

- Raman image generated by PCA
- inVia 785 nm StreamLine

Mucin/lumen
Lipid
Lamina propria
Epithelial cells

Classification model building

- A classification model building tool will be provided
- Direct import of maps generated using RA800 tissue analyser
- Data pre-processing algorithms are implemented
- Ensuring data transferability

Configure preprocessing options	Model building	Data classification tool
Load Current Model Options	Step 1: Available Models to Edit Step 2: Current Model	Step 2: WDF Selection WDF file to classify 18-07 ai 4s x50 785mi toc2 wdf Current Model James
Select Preprocessing Method: Only EMSC Extended Multiplicative Scatter Correction (EMSC) Vector Normalization	James WDF file name Pathology Patient D Collaborator NMEp 16-07 s4 s.d., SN 16-07 REN 654-98 REN 654-98 REN	Step 1: Available Duit Nobels Step 3: Casesify NOF and Deptys/Expont Netwin Det Marea Casesify NOF and Deptys/Expont Netwin Ax12 MRg Casesify Data Casesify Data
Standard Normal Variate (SWV) Spectral Correction Options Polynomial Baseline Subtraction @ Active Order 7 User Defined ENSC Reference		
Active Upload Reference Objective Lens Subtraction Active	Denie Model Add New WDP Memore Selected WDP Sep 3: Configure Model Building Sep 4: Build and Validate Model Max Wavenumber Range Raid Model Max Wavenumber Range	
Use PCA Loadings Number 5 Objective Filename Collaborator 1 Path3_REN.wdf REN	Configure Cross-Valdation Biss ROC Curves Max 2516:1914 Configure Cross-Valdation Valdate Moder (optional)	Dute or Edit Nodel Stag 4: Oxfuel Statelice Pathology: %Spectra #Athology: %Spectra OV 0 0 0.000 1 0.997
Upload WDF Files Remove WDF Files	Step 5: Cross Validation Results Pathology Sensitivity Specificity AUC 1 KOV 0.9956 1 0.9957	2 [3N 013027 1944 1 0.9006 0.9996 3 [Juncasetted 18,8173 327
Truncate Spectra Minimum Wavenumber 400 Maximum Wavenumber 1800	2 SN 1 0 9936 0 9995	
Remove O2 Band		Export Table
Noise Filtering		Data classification troi v2
Median Filter Pixel radius 2	Confusion Matrix PCA Loadings ANOVA F-Scores Export Table	
Savitsky-Golay Window size Polynomial Order	L	
Remove edge pixels Edge width 2		
Save and Return Return Without Save Restore Defaults		

Provide a robust RS-based diagnostic platform

- Multi-centre study currently in place
- Human oesophageal sections
 - 10x intraepithelial metaplasia (IM)
 - 10x adenocarcinoma (AC)
- Algorithms in the final product will depend on the outcomes

Disease stage		No.of spectra	
IM		114,456	
AC		104,911	
Site 1 as training set (site 2 as test set)		Site 1 as training set (site 3 as test set)	
Sensitivity (%)	Specificity (%)	Sensitivity (%)	Specificity (%)

Isabelle et al 2016, Faraday Discussions, published online

Distributable GI tract cancer classification model

- To be used by clinicians for diagnosis
- Trialled as part of the histopathology review routine
- Evaluate practicality
- Oesophgeal cancer
- 5th largest cancer killer in the UK
- 5 year survival rate = only 15%
- Early diagnosis = better survival
- RS-based identification to improve accuracy and objectivity

Model:

- >250 healthy/cancer samples
- Confirmed by consultant pathologist with second opinion
- Stages:
 - Normal squamous
 - IM (non-dysplastic/indefinite for dysplasia)
 - Dysplasia (low to high grade)
 - AC

Provide a robust GI tract cancer classification model

Conclusion

- The hurdles towards the clinical adoption of RS for routine histopathology review have been discussed
- The SMART consortium is addressing each of the hurdles
- By Oct 2016, SMART aims to deliver:
 - Increased awareness and acceptance of Raman technologies among clinicians
 - Optimised sample preparation, mapping and data analysis protocols
 - A robust Raman platform for building disease classification models and classifying unknowns
 - A distributable, robust and validated GI tract cancer model

Acknowledgments

SMART Consortium

Gloucestershire Hospitals NHS Trust, UK

- Dr Martin Isabelle
- Dr Gavin Rhys Lloyd
- Dr Catherine Kendall
- Prof Neil Shepherd

University of Exeter, UK

- Dr Jennifer Dorney
- Prof Nicholas Stone

University College London,

- Dr Aaran Lewis,
- Dr Manuel Rodriguez-Justo
- Prof Geraint Thomas

Innovate UK

IVERSITY OF

Innovate UK

Technology Strategy Board

ETER

Biophotonics Research Unit

NHS Foundation Trust

University College London, UK

 Miss Riana Gaifulina, University College London

Renishaw plc

- Dr Ian Bell
- Mr Robert Brown
- Miss Stephanie Ohrel
- Miss Ruth Lawson
- Mr Tim Smith
- Mr Steve Ritchings
- Mr Marek Synowiec
- Mr Tim Mills
- Dr Brian Smith
- Mr David Reece
- Mr Simon Holden

Pathologists at UCL Hospital, John Radcliffe Hospital and the Bristol Royal Infirmary

Thank you!

WS.V	Raman imaging techniques demonstrated on an inVia Reflex micro-Raman system: examples and discussion	Sep 22 09:00 - 11:00	
Co-organized and Sponsored by: RENISHAW Abstract		RENISHAW	
WS.VI	Optimising, redesigning and preparing to build: steps to additively manufacture mechanical parts	Sep 22 15:00 - 17:00	

© 2016 Renishaw plc

Raman imaging to discern different anatomical layers

 H&E stained Barrett's mucosa (human oesophagus) section

- Raman image generated by PCA
- inVia 785 nm StreamLine

Mucin/lumen
Lipid
Lamina propria
Epithelial cells